GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons.
نویسندگان
چکیده
Although it plays a major inhibitory role in the adult mammalian CNS, gamma-aminobutyric acid (GABA) may have an excitatory function in developing neurons. The present study focuses on the dependence of glutamate on GABA to generate action potentials in developing hypothalamic neurons. Under conditions where glutamate by itself could not evoke an action potential, GABA facilitated glutamate-mediated depolarization to fire action potentials. This facilitation had a broad time window during the decaying phase of the GABA-mediated depolarization in developing neurons in culture. The glutamate-mediated depolarization was shunted only during the peak of GABA-mediated depolarization, but was facilitated after that. Similar results were obtained in the presence of 2-amino-5-phosphonopentanoic acid (AP5), indicating that GABA can facilitate glutamate responses independent of relief of the Mg2+ block of the N-methyl-D-aspartate (NMDA) receptor. This novel interaction between GABA- and glutamate-mediated excitation could play a role in strengthening neuronal circuits during early development and would exert a maximal effect if GABA and glutamate receptors were activated after a slight temporal delay.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملAlcohol potently inhibits the kainate receptor-dependent excitatory drive of hippocampal interneurons.
Kainate receptors (KA-Rs) are members of the glutamate-gated family of ionotropic receptors, which also includes N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. KA-Rs are important modulators of interneuron excitability in the CA1 region of the hippocampus. Activation of these receptors enhances interneuron firing, which robustly increases ...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 2 شماره
صفحات -
تاریخ انتشار 1998